Internalized timing of isochronous sounds is represented in neuromagnetic β oscillations.
نویسندگان
چکیده
Moving in synchrony with an auditory rhythm requires predictive action based on neurodynamic representation of temporal information. Although it is known that a regular auditory rhythm can facilitate rhythmic movement, the neural mechanisms underlying this phenomenon remain poorly understood. In this experiment using human magnetoencephalography, 12 young healthy adults listened passively to an isochronous auditory rhythm without producing rhythmic movement. We hypothesized that the dynamics of neuromagnetic beta-band oscillations (~20 Hz)-which are known to reflect changes in an active status of sensorimotor functions-would show modulations in both power and phase-coherence related to the rate of the auditory rhythm across both auditory and motor systems. Despite the absence of an intention to move, modulation of beta amplitude as well as changes in cortico-cortical coherence followed the tempo of sound stimulation in auditory cortices and motor-related areas including the sensorimotor cortex, inferior-frontal gyrus, supplementary motor area, and the cerebellum. The time course of beta decrease after stimulus onset was consistent regardless of the rate or regularity of the stimulus, but the time course of the following beta rebound depended on the stimulus rate only in the regular stimulus conditions such that the beta amplitude reached its maximum just before the occurrence of the next sound. Our results suggest that the time course of beta modulation provides a mechanism for maintaining predictive timing, that beta oscillations reflect functional coordination between auditory and motor systems, and that coherence in beta oscillations dynamically configure the sensorimotor networks for auditory-motor coupling.
منابع مشابه
Commentary: Beta-Band Oscillations Represent Auditory Beat and Its Metrical Hierarchy in Perception and Imagery
UNLABELLED Dancing to music involves synchronized movements, which can be at the basic beat level or higher hierarchical metrical levels, as in a march (groups of two basic beats, one-two-one-two …) or waltz (groups of three basic beats, one-two-three-one-two-three …). Our previous human magnetoencephalography studies revealed that the subjective sense of meter influences auditory evoked respon...
متن کاملPredicting “When” Using the Motor System’s Beta-Band Oscillations
Anticipating future sensory events is one keystone of adaptive behavior. This notion is at the origin of recent theories suggesting perception and action control rely on internal models that are constantly tested and updated as a function of incoming sensory inputs. These hierarchical models (predictive coding and other generative models based on the notion of inference) suggest that neural res...
متن کاملHuman Neuroscience
Anticipating future sensory events is one keystone of adaptive behavior. This notion is at the origin of recent theories suggesting perception and action control rely on internal models that are constantly tested and updated as a function of incoming sensory inputs. These hierarchical models (predictive coding and other generative models based on the notion of inference) suggest that neural res...
متن کاملUnpredicted Pitch Modulates Beta Oscillatory Power during Rhythmic Entrainment to a Tone Sequence
Extracting temporal regularities in external stimuli in order to predict upcoming events is an essential aspect of perception. Fluctuations in induced power of beta band (15-25 Hz) oscillations in auditory cortex are involved in predictive timing during rhythmic entrainment, but whether such fluctuations are affected by prediction in the spectral (frequency/pitch) domain remains unclear. We tes...
متن کاملVisual and Audiovisual Effects of Isochronous Timing on Visual Perception and Brain Activity
Understanding how the brain extracts and combines temporal structure (rhythm) information from events presented to different senses remains unresolved. Many neuroimaging beat perception studies have focused on the auditory domain and show the presence of a highly regular beat (isochrony) in "auditory" stimulus streams enhances neural responses in a distributed brain network and affects perceptu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 5 شماره
صفحات -
تاریخ انتشار 2012